2	
3	
4	
5	
6	Guidelines for Nitrosamine
7	Impurities in Drug substances and
8	pharmaceutical drug Products
9	Year 2025
10	
11	
12	
13	
14	
15	
16	Code:
17	Version No: 1/2025
18	Issue Date: //2025
19	Effective date: //2025

Table content	page
Introduction and background	
Types and origins	
Risk assessment	
Acceptable intake limits	
Analytical testing	
Mitigation strategies	
Regulatory expectations	

Table of Contents

1. Introduction and Background	1	[.]	Introd	luction	and	Bac	kgro	und
--------------------------------	---	-----	--------	---------	-----	-----	------	-----

Nitrosamine impurities have emerged as a significant quality and safety
concern in the pharmaceutical industry since their initial detection in
2018. These impurities, classified as probable human carcinogens based
on animal studies, present potential cancer risks to patients when
present in pharmaceutical products above acceptable levels. The
regulatory response to this issue has been global in scope, with health
authorities worldwide including the U.S. Food and Drug Administration
(FDA), European Medicines Agency (EMA), and other international
regulators working collaboratively to establish comprehensive
guidelines for industry. This guidance document synthesizes current
regulatory expectations and provides practical recommendations for
manufacturers to detect, control, and prevent nitrosamine impurities in
active pharmaceutical ingredients (APIs) and finished drug products.
The discovery of nitrosamine contamination first occurred in
angiotensin II receptor blockers (ARBs) like valsartan, losartan, and
irbesartan, and subsequently extended to other medications including
ranitidine, nizatidine, metformin, and various antibiotics. These findings
led to widespread recalls and heightened regulatory scrutiny of
pharmaceutical manufacturing processes worldwide. The concern stems
from the fact that even at low levels, long-term exposure to certain
nitrosamine impurities may increase cancer risk in humans.
Consequently, regulatory agencies have emphasized that marketing
authorization holders bear ultimate responsibility for ensuring the
quality and safety of their products, which includes implementing
robust controls to prevent nitrosamine formation or contamination.

- 70 2. Types of Nitrosamine Impurities and Their Origins
- 71 Nitrosamine impurities in pharmaceuticals fall into two primary categories
- 72 based on their structural characteristics and origin:
- 73 Small-molecule nitrosamines:
- 74 These are relatively low molecular weight compounds that do not share
- 75 structural similarity with active pharmaceutical ingredients. They are often
- 76 found across multiple different drug products. Common examples include:
- 77 N-nitrosodimethylamine (NDMA)
- 78 N-nitrosodiethylamine (NDEA)
- 79 N-nitrosomethylphenylamine (NMPA)
- 80 N-nitrosodiisopropylamine (NDIPA)
- N-nitrosoisophenylethylamine (NIPEA)
- 82 N-nitrosodibutylamine (NDBA)
- 83 N-nitroso-N-methyl-4-aminobutyric acid (NMBA)
- 84 And others
- 85 Nitrosamine Drug Substance-Related Impurities (NDSRIs):
- 86 These impurities share structural similarity with the API or are derived
- 87 from API fragments.
- 88 They are generally unique to each specific API and form through
- 89 nitrosation of APIs or API fragments containing secondary or tertiary
- 90 centers when exposed to nitrosating in favorable conditions.
- 91 The following examples include but not limited to NDSRIs:

Nitrosamine Name	Source
N-nitroso-atomoxetine	Atomoxetine
N-nitroso-duloxetine	Duloxetine
N-nitroso-fluoxetine	Fluoxetine
N-nitroso-methylphenidate	Methylphenidate

- 92 Root Causes and Formation Pathways
- 93 The formation of nitrosamine impurities occurs primarily through a
- 94 chemical reaction between amines (secondary or tertiary) and nitrosating
- 95 agents (typically nitrite salts under acidic conditions that form nitryl
- 96 cation.

- 98 3. Risk Assessment Frameworks
- 99 3.1 Systematic Risk Evaluation
- 100 Manufacturers should conduct a comprehensive risk assessment for all
- 101 chemically synthesized APIs and drug products to evaluate the potential
- 102 for nitrosamine formation or contamination. This assessment should be
- science-based and systematically documented, considering all potential
- sources of nitrosamine impurities throughout the manufacturing process
- and supply chain. The risk is highest when secondary or tertiary amines
- and nitrosating agents are present simultaneously and under favorable
- 107 conditions (e.g., acidic pH, elevated temperature, during processing or
- 108 storage).
- 109 Key elements of the risk assessment should include:
- 110 API Manufacturing Process:
- Use of nitrite salts or nitrous acid in processes containing amine
- 112 precursors.

- -The use of sodium nitrite (or other nitrites) in the same equipment as
- amines without adequate cleaning in between could be a major cross-
- 115 contamination risk.
- Presence of amine functional groups in APIs, degradants, intermediates,
- 117 or raw materials.
- Secondary or Tertiary amines added as reagents or catalysts.
- Degradation of amide solvents (e.g., N,N-dimethylformamide) into
- 120 secondary amines.
- Amine impurities in reagents or solvents.
- Use of nitrous acid to quench residual azide in the presence of precursor
- 123 amines.
- Inadequate process optimization and control (temperature, pH, reagent
- 125 addition sequence).
- 126 **Drug Product Formulation and Storage:**
- Reaction between APIs with amine functional groups and nitrite
- impurities in excipients
- Use of potable water containing nitrite impurities in manufacturing.
- Assessment of process conditions that could facilitate nitrosamine
- formation (presence of nitrites, acidic conditions, etc.).
- Leachates from container closure systems and secondary packaging
- components. (e.g. rubber stoppers in vials could be a potential source of
- 134 nitrosating agents.)
- Manufacturing equipment as a source of nitrite or nitrosamine
- contamination.
- 137 Supply Chain Considerations:
- Vendor-sourced raw materials containing nitrosamine precursors

- 139 - Impurities in fresh solvents
- 140 - Cross-contamination at manufacturing sites
- 141 - Recovered materials (solvents, reagents, catalysts) containing residual
- 142 amines or nitrosamine formation during recovery processes(e.g. the use of
- 143 recovered solvents, especially from third-party recyclers, poses a significant
- 144 and well-documented risk if not rigorously controlled).
- 145 - Inadequate cleaning between different materials or customers
- 146 **Storage conditions:**
- 147 Evaluation of potential nitrosamine formation during storage over the
- 148 product's shelf life.

- 150 3.2 Prioritization Strategy
- Products should be prioritized for evaluation based on the following factors 152
- 153 (in descending order of importance):
- 154 1. Medicines with known risks: Products similar to those previously found
- to contain nitrosamines (e.g., sartans, metformin) 155
- 156 2. High daily dose products: Products with higher maximum daily doses
- 157 present greater potential exposure
- 158 3. Chronic treatments: Products intended for long-term use increase
- 159 cumulative exposure risk
- 160 4. Large patient populations: Products used by many patients represent
- 161 greater public health impact
- 162 5. Critical medicines: Products with limited alternatives require special
- 163 consideration to avoid shortages

	•
166	
167	4.1 Establishing Acceptable Intake Limits
168	Regulatory agencies recommend several approaches for determining AI
169	limits:
170	Compound-specific carcinogenicity data:
171	When robust substance-specific animal carcinogenicity data exists, the
172	TD50 (tumorigenic dose that induces tumors in 50% of test animals) should
173	be calculated and used to derive a substance-specific limit for lifetime
174	exposure as recommended in ICH M7(R2) guideline.

Acceptable Intake Limits and Safety Assessment

Predicted Carcinogenic Potency Categorization Approach (CPCA): 175

176 For NDSRIs lacking compound-specific data, AI limits can be assigned

based on predicted carcinogenic potency categorization which categorizes 177

178 nitrosamines into five potency categories based on their structural features:

Table: FDA's Carcinogenic Potency Categories and Corresponding AI 179

180 Limits

165

Category	Acceptable Intake (AI)
1	26.5 ng/day
2	100 ng/day
3	400 ng/dav
4	1500 ng/day
5	1500 ng/day

181

182

Read-across analysis:

183	Using robust carcinogenicity data from a structurally similar surrogate
184	compound when substance-specific data is unavailable.
185	Default approach:
186	If the AI limit cannot be determined using the above approaches, AI limit
187	may be recommended according to the FDA or EMA default AI limit for
188	the most potent nitrosamines.
189	The FDA's default for nitrosamines without sufficient compund-specific
190	data is 26.5 ng/day (the AI for Category 1)
191	. Analytical Testing and Specifications
192	5.1 Confirmatory Testing Strategies
193	When a risk assessment identifies potential nitrosamine formation or
194	contamination, manufacturers should perform confirmatory testing using
195	appropriately validated analytical methods. Key considerations for testing
196	include:
197	Method validation: Analytical methods should demonstrate specificity
198	(avoid matrix effect), excellent chromatographic separation, and highly
199	sensitive detection capability (Cover the expected LOQ, 10 % of the
200	Acceptable limit).
201	
202	Testing scope: Confirmatory testing should be performed on at least three
203	representative batches of drug product or API
204	Stability testing: Include testing of stability samples to evaluate potential
205	nitrosamine formation over the product's shelf life
206	Method development: Consider published methods from regulatory
207	agencies including FDA and European Official Medicine Control
208	Laboratories (OMCL)

209	
210	5.2 Specification Setting
211	
212	If testing confirms the presence of a nitrosamine impurity above 10% of
213	the acceptable intake limit, manufacturers should:
214	Establish specifications: Implement a specification limit for the nitrosamine
215	impurity to ensure it remains at or below the recommended AI limit
216	Routine testing: Implement testing of each batch on release and stability
217	samples for nitrosamine impurities for at-risk APIs or drug product with
218	an impurity detected above 10% of the recommended AI limit
219	Control strategy: Develop an appropriate control strategy considering
220	batch-to-batch variations
221	Batch rejection: Do not release any API or drug product batch containing
222	levels of nitrosamine impurities above the recommended AI limit for
223	distribution
224	The batch rejection rule applies at two key stages:
225	· At Release: Before a batch is released to the market, it must be tested (if it
226	falls under a routine testing control strategy). If the test result shows a
227	nitrosamine level at or above the AI, the batch must not be released. It is
228	considered non-compliant and unsafe.
229	· During Shelf Life (Stability): The control strategy must ensure the
230	impurity does not exceed the AI throughout the product's shelf life. If
231	stability testing on a marketed batch shows that the nitrosamine level has
232	risen to or above the AI before the expiry date, this typically triggers a
233	batch recall. The product is no longer considered safe for its entire
234	intended use period.

235	Mitigation and Control Strategies
236	
237	6.1 Process Optimization and Design
238	
239	Manufacturers should implement preventive measures to avoid
240	nitrosamine formation through careful process design and optimization:
241	
242	Route of synthesis evaluation: During process development, evaluate
243	alternative synthetic routes that avoid conditions conducive to nitrosamine
244	formation
245	Reagent selection: Avoid or replace amine bases, amide solvents, and
246	nitrites whenever possible
247	Process conditions: Optimize reaction conditions (temperature, pH,
248	reagent addition sequence) to minimize nitrosamine formation
249	Quenching modifications: Remove quenching steps from the primary
250	reaction mixture or replace nitrites with alternative quenching agents
251	Purification steps: Incorporate purification steps capable of removing
252	nitrosamine impurities when prevention is not fully achievable
253	
254	6.2 Supply Chain Management
255	
256	Robust supplier qualification and material controls are essential for
257	preventing nitrosamine contamination:
258	
259	Supplier audits: Conduct comprehensive audits of suppliers of raw
260	materials, intermediates, and solvents

261	Material specifications: Establish appropriate specifications for raw
262	materials regarding nitrite and amine content
263	Chain of custody: Request documented records of the name of the raw
264	material manufacturer and its supplier and the roles of actual
265	manufacturers
266	Recovered materials: Use recovered materials only in the same step or
267	earlier steps of the same process from which they were collected to avoid
268	cross-contamination
269	Water quality: Analyze water used in manufacturing for nitrites and
270	nitrosamines and use purified water when necessary
271	
272	6.3 Packaging and Storage Controls
273	
274	Packaging selection and storage conditions can significantly impact
275	nitrosamine formation:
276	
277	Packaging evaluation: Assess container closure systems for potential to
278	leach nitrosamines or nitrosating agents into the drug product
279	Alternative materials: Select packaging materials that do not contain
280	nitrosamine precursors
281	Storage conditions: Establish appropriate storage conditions that minimize
282	nitrosamine formation over time
283	Stability studies: Conduct comprehensive stability studies that include
284	nitrosamine testing to verify control throughout the shelf life.
285	
286	

287	. Regulatory expectations:
288	EDA Recommended Timeline for Implementing Risk Assessments,
289	Confirmatory Testing depending on the regulatory status of the drug
290	product and the type of nitrosamine impurity at issue.
291	For drug substances:
292	All APIs listed in High risk APIs List that can form nitrosamine impurities
293	should submit a detailed nitrosamine risk assessment through the specific
294	link on the EDA website based on importation approval issued by central
295	administration of pharmaceutical policies and market access.
296	For finished drug products submitted for registration or renewal
297	evaluation:
298	For drug products containing metformin or sartans Comprehensive
299	nitrosamine risk assessment should be included in the dossier from the date
300	of guideline issue.
301	Drug products containing the rest of APIs listed in High risk APIs List that
302	can form nitrosamine impurities, Comprehensive nitrosamine risk
303	assessment should be included in the dossier from 1-1-2026.
304	